Skip to content

fastfem.elements

LinearSimplex2D

Bases: Element2D

A triangular isparametric element with a 3-dimensional shape function space - one for each vertex.

Source code in fastfem/elements/linear_simplex2d.py
class LinearSimplex2D(Element2D):
    """A triangular isparametric element with a 3-dimensional shape function space -
    one for each vertex.
    """

    def basis_shape(self):
        return (3,)

    def reference_element_position_field(self):
        return Field((3,), (2,), np.array([[0, 0], [1, 0], [0, 1]]))

    def _interpolate_field(self, field, X, Y):
        X = Field(X.shape, (), X)
        Y = Field(Y.shape, (), Y)
        return (
            field.basis[0, ...] * (1.0 - X - Y)
            + field.basis[1, ...] * X
            + field.basis[2, ...] * Y
        )

    def _compute_field_gradient(self, field, pos_field=None):
        if (
            field.basis_shape == ()
            or len(field.coefficients.shape) == 0
            or field.coefficients.shape[0] == 1
        ):  # we have a constant function.
            return Field(
                (),
                (
                    *field.point_shape,
                    2,
                ),
                np.zeros(field.stack_shape + field.point_shape + (1,)),
            )

        grad_coefs = fnp.stack(
            [
                field.basis[1, ...] - field.basis[0, ...],
                field.basis[2, ...] - field.basis[0, ...],
            ],
            axis=(ShapeComponent.POINT, len(field.point_shape)),
        )
        if pos_field is not None:
            def_grad = self._compute_field_gradient(pos_field)
            grad_coefs = fnp.einsum(
                ShapeComponent.POINT,
                "...ij,...i->...j",
                fnp.linalg.inv(def_grad, ShapeComponent.POINT),
                grad_coefs,
            )

        return grad_coefs

    def _integrate_field(self, pos_field, field, jacobian_scale=...):
        coefs = (np.ones((3, 3)) + np.eye(3)) / 24
        return fnp.einsum(
            ShapeComponent.BASIS,
            ",ij,i,j->",
            fnp.abs(fnp.linalg.det(self._compute_field_gradient(pos_field))),
            coefs,
            field,
            jacobian_scale,
        )

    def _integrate_basis_times_field(
        self, pos_field, field, indices=None, jacobian_scale=...
    ):
        coefs = (
            np.array(
                [
                    [[6, 2, 2], [2, 2, 1], [2, 1, 2]],
                    [[2, 2, 1], [2, 6, 2], [1, 2, 2]],
                    [[2, 1, 2], [1, 2, 2], [2, 2, 6]],
                ]
            )
            / 120
        )
        res = fnp.einsum(
            ShapeComponent.BASIS,
            ",kij,i,j->k",
            fnp.abs(fnp.linalg.det(self._compute_field_gradient(pos_field))),
            coefs,
            field,
            jacobian_scale,
        )
        return res if indices is None else res.basis[*indices]

    def _integrate_grad_basis_dot_field(
        self, pos_field, field, indices=None, jacobian_scale=...
    ):
        # this is rather unoptimized. TODO make better
        basis_diff_coefs = np.array([[-1, -1], [1, 0], [0, 1]])
        defgrad = self._compute_field_gradient(pos_field)
        dginv = fnp.linalg.inv(defgrad)

        # pad to field-shape, excluding last axis, which is dotted (contracted)
        # fieldpad = (np.newaxis,) * (len(field.point_shape) - 1)
        basis_times_field = fnp.einsum(
            ShapeComponent.POINT,
            ",kl,lg,...g->k...",
            # exclude jacobian, since we are delegating to integrate_field subroutine.
            # np.abs(np.linalg.det(defgrad.coefficients)[..., *fieldpad]),
            1,
            basis_diff_coefs,
            dginv,
            field,
        )
        integ = fnp.moveaxis(
            self.integrate_field(
                pos_field,
                basis_times_field,
                jacobian_scale,
            ),
            (ShapeComponent.POINT, 0),
            (ShapeComponent.BASIS, 0),
        )
        if indices is None:
            return integ
        return integ.basis[*indices]

LinearSimplexMesh2D

Bases: StaticElement2D

Source code in fastfem/elements/linear_simplex_mesh2d.py
class LinearSimplexMesh2D(StaticElement2D):
    def __init__(self, mesh: Mesh):
        nodes = {}
        elems = []
        # gather all nodes and elements in the above structures
        for component in mesh:
            if component.dimension == 2:
                for submesh in component.mesh:
                    if submesh.number_of_nodes_per_element != 3:
                        message = (
                            "LinearSimplexMesh2D operates on triangles!"
                            f" '{component.name}' has"
                            f" {submesh.number_of_nodes_per_element} nodes per element."
                        )
                        raise ValueError(message)
                    nodes.update(submesh.nodes)
                    elems.extend(submesh.elements.values())
        self.mesh = mesh
        self.num_nodes = len(nodes)
        self.num_elements = len(elems)
        node_index_to_basis_index = {}
        self.node_coords = np.empty((self.num_nodes, 2), dtype=float)
        self.element_node_indices = np.empty((self.num_elements, 3), dtype=int)
        # populate node coords, and obtain the node-index -> basis-index mapping
        for i, v in enumerate(nodes.items()):
            if abs(v[1][2]) > 1e-15:
                message = (
                    f"Node {i} must have a z-component of zero. Found"
                    f" {v[1][2]} instead."
                )
                raise ValueError(message)
            node_index_to_basis_index[v[0]] = i
            self.node_coords[i, :] = v[1][:2]

        # element [i,:] should be the basis indices of element i.
        for i in range(self.num_elements):
            for j in range(3):
                self.element_node_indices[i, j] = node_index_to_basis_index[elems[i][j]]

        self.position_field = Field((self.num_nodes,), (2,), self.node_coords)
        self.position_field_atomstack = self.to_atomstack(self.position_field)

    def to_atomstack(self, field: Field) -> Field:
        """Takes a field from the Mesh basis into the atom (LinearSimplex2D) field,
        where the field on each element `i` of the mesh corresponds to
        `atomstack.stack[i,...]`. That is, the basis shape becomes (3,), while an
        axis of size `num_elements` is prepended to the stack shape.

        Args:
            field (Field): The field to convert.

        Returns:
            Field: The field as represented by a stack of LinearSimplex2D fields.
        """
        self._verify_field_compatibilities(field)
        field = field.broadcast_to_shape(
            field.stack_shape, self.basis_shape(), field.point_shape
        )
        return fnp.moveaxis(
            field.basis[self.element_node_indices],
            (ShapeComponent.BASIS, 0),
            (ShapeComponent.STACK, 0),
        )

    def from_atomstack_accumulate(self, field: Field) -> Field:
        """Takes a field stack from the atomic (LinearSimplex2D) bases into the Mesh basis,
        where the field on each element `i` of the mesh corresponds to
        `atomstack.stack[i,...]`. The leading stack component is contracted. Repeated
        nodes are added, so this method is used to add integrals of shape functions.

        Args:
            field (Field): The field to convert.

        Returns:
            Field: The field in the mesh basis.
        """
        return assemble_field_add(field, self.element_node_indices, self.basis_shape())

    @typing.override
    def basis_shape(self) -> tuple[int, ...]:
        return (self.num_nodes,)

    @typing.override
    def _interpolate_field(self, field: Field, X: NDArray, Y: NDArray) -> Field:
        raise NotImplementedError

    @typing.override
    def _integrate_field(self, field: Field, jacobian_scale: Field) -> Field:
        return fnp.sum(
            atom._integrate_field(
                self.position_field_atomstack.stack[
                    :, *(np.newaxis for _ in field.stack_shape)
                ],
                self.to_atomstack(field),
                self.to_atomstack(jacobian_scale),
            ),
            FieldAxisIndex(ShapeComponent.STACK, 0),
        )

    @typing.override
    def _integrate_basis_times_field(
        self, field: Field, indices: colltypes.Sequence | None, jacobian_scale: Field
    ) -> Field:
        if indices is not None:
            message = "Index assembly not yet implemented"
            raise NotImplementedError(message)
        return self.from_atomstack_accumulate(
            atom._integrate_basis_times_field(
                self.position_field_atomstack.stack[
                    :, *(np.newaxis for _ in field.stack_shape)
                ],
                self.to_atomstack(field),
                indices=None,
                jacobian_scale=self.to_atomstack(jacobian_scale),
            )
        )

    @typing.override
    def _integrate_grad_basis_dot_field(
        self, field: Field, indices: colltypes.Sequence | None, jacobian_scale: Field
    ) -> Field:
        if indices is not None:
            message = "Index assembly not yet implemented"
            raise NotImplementedError(message)
        return self.from_atomstack_accumulate(
            atom._integrate_grad_basis_dot_field(
                self.position_field_atomstack.stack[
                    :, *(np.newaxis for _ in field.stack_shape)
                ],
                self.to_atomstack(field),
                indices=None,
                jacobian_scale=self.to_atomstack(jacobian_scale),
            ),
        )

    @typing.override
    def _integrate_grad_basis_dot_grad_field(
        self, field: Field, indices: colltypes.Sequence | None, jacobian_scale: Field
    ) -> Field:
        if indices is not None:
            message = "Index assembly not yet implemented"
            raise NotImplementedError(message)
        return self.from_atomstack_accumulate(
            atom._integrate_grad_basis_dot_grad_field(
                self.position_field_atomstack.stack[
                    :, *(np.newaxis for _ in field.stack_shape)
                ],
                self.to_atomstack(field),
                indices=None,
                jacobian_scale=self.to_atomstack(jacobian_scale),
            ),
        )

to_atomstack(field)

Takes a field from the Mesh basis into the atom (LinearSimplex2D) field, where the field on each element i of the mesh corresponds to atomstack.stack[i,...]. That is, the basis shape becomes (3,), while an axis of size num_elements is prepended to the stack shape.

Parameters:

  • field (Field) –

    The field to convert.

Returns:

  • Field ( Field ) –

    The field as represented by a stack of LinearSimplex2D fields.

Source code in fastfem/elements/linear_simplex_mesh2d.py
def to_atomstack(self, field: Field) -> Field:
    """Takes a field from the Mesh basis into the atom (LinearSimplex2D) field,
    where the field on each element `i` of the mesh corresponds to
    `atomstack.stack[i,...]`. That is, the basis shape becomes (3,), while an
    axis of size `num_elements` is prepended to the stack shape.

    Args:
        field (Field): The field to convert.

    Returns:
        Field: The field as represented by a stack of LinearSimplex2D fields.
    """
    self._verify_field_compatibilities(field)
    field = field.broadcast_to_shape(
        field.stack_shape, self.basis_shape(), field.point_shape
    )
    return fnp.moveaxis(
        field.basis[self.element_node_indices],
        (ShapeComponent.BASIS, 0),
        (ShapeComponent.STACK, 0),
    )

from_atomstack_accumulate(field)

Takes a field stack from the atomic (LinearSimplex2D) bases into the Mesh basis, where the field on each element i of the mesh corresponds to atomstack.stack[i,...]. The leading stack component is contracted. Repeated nodes are added, so this method is used to add integrals of shape functions.

Parameters:

  • field (Field) –

    The field to convert.

Returns:

  • Field ( Field ) –

    The field in the mesh basis.

Source code in fastfem/elements/linear_simplex_mesh2d.py
def from_atomstack_accumulate(self, field: Field) -> Field:
    """Takes a field stack from the atomic (LinearSimplex2D) bases into the Mesh basis,
    where the field on each element `i` of the mesh corresponds to
    `atomstack.stack[i,...]`. The leading stack component is contracted. Repeated
    nodes are added, so this method is used to add integrals of shape functions.

    Args:
        field (Field): The field to convert.

    Returns:
        Field: The field in the mesh basis.
    """
    return assemble_field_add(field, self.element_node_indices, self.basis_shape())

SpectralElement2D

Bases: Element2D

A spectral element in 2 dimensions of order N, leading to (N+1)^2 nodes. GLL quadrature is used to diagonalize the mass matrix.

Source code in fastfem/elements/spectral_element2d.py
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
class SpectralElement2D(element.Element2D):
    """A spectral element in 2 dimensions of order N, leading to (N+1)^2 nodes.
    GLL quadrature is used to diagonalize the mass matrix.
    """

    def __init__(self, degree: int):
        super().__init__()
        self.degree = degree  # poly degree (#nodes - 1)
        self.num_nodes = degree + 1

        self.knots, self.weights, self._lagrange_polys = _build_GLL(degree)
        # store derivatives of L_i as needed, so they need only be computed once
        self._lagrange_derivs = {}
        self._lagrange_derivs[0] = self._lagrange_polys

        self._lagrange_at_knots = {}

    @typing.override
    def basis_shape(self) -> tuple[int, ...]:
        """Returns a tuple representing the shape of the array corresponding to the
        basis coefficients. A scalar field `f`, given as an array is expected to have
        shape `f.shape == element.basis_shape()`
        """
        return (self.num_nodes, self.num_nodes)

    @typing.override
    def reference_element_position_field(self) -> Field:
        """
        The position field of the reference (un-transformed) element. This is a vector
        field.

        Returns:
            Field: An array of shape `(*element.basis_shape(), 2)`
        """
        out = np.empty((self.num_nodes, self.num_nodes, 2))
        out[:, :, 0] = self.knots[:, np.newaxis]
        out[:, :, 1] = self.knots[np.newaxis, :]
        return self.Field(out, False, (2,))

    def lagrange_poly1D(self, deriv_order: int = 0) -> NDArray:
        """
        Returns the polynomial coefficients `P[i,k]`, where
        $\\frac{d^{r}}{dx^{r}} L_{i}(x) = \\sum_k P[i,k] x^k$ with $r$ as `deriv_order`.

        deriv_order (default 0)

        Args:
            deriv_order (int, optional): The order $r$ of the derivative. This is
                expected to be an integer between 0 (inclusive) and degree+1 (exclusive),
                but this check is not done. Defaults to 0.

        Returns:
            np.ndarray: The coefficient array `P[i,k]` which is of shape
            `(degree + 1, degree + 1 - deriv_order)`
        """
        if deriv_order in self._lagrange_derivs:
            return self._lagrange_derivs[deriv_order]

        # inefficient partial partition calc, but only done once, so...
        coefs = self._lagrange_polys
        for _ in range(deriv_order):
            coefs = coefs[:, 1:] * np.arange(1, coefs.shape[1])

        self._lagrange_derivs[deriv_order] = coefs
        return coefs

    @typing.override
    def _interpolate_field(
        self,
        field: Field,
        X: NDArray,
        Y: NDArray,
    ) -> typing.Any:
        """Evaluates field at (X,Y) in reference coordinates.
        The result is an array of values `field(X,Y)`.

        `field` is of shape `(*basis_shape,...,*fieldshape)`, where the internal
        ellipses `...` broadcasts with X and Y
        using numpy's rules for broadcasting.

        X and Y must have compatible shape, broadcasting to pointshape.

        Args:
            field (Field): an array of shape (degree+1,degree+1,*fieldshape)
                representing the field to be interpolated.
            X (NDArray): x values (in reference coordinates).
            Y (NDArray): y values (in reference coordinates).
            fieldshape (tuple[int,...], optional): the shape of `field` at each point.
                Defaults to tuple() for a scalar field.

        Returns:
            typing.Any: The interpolated values `field(X,Y)`
        """
        # F^{i,j} L_{i,j}(X,Y)
        # lagrange_polys[i,k] : component c in term cx^k of poly i
        return fnp.einsum(
            ShapeComponent.BASIS,
            "ij,ia,...a,jb,...b->...",
            field,
            self._lagrange_polys,
            np.expand_dims(X, -1) ** np.arange(self.num_nodes),
            self._lagrange_polys,
            np.expand_dims(Y, -1) ** np.arange(self.num_nodes),
        )

    # @warnings.deprecated("This can be done (probably cleaner) with JAX.")
    def locate_point(
        self,
        pos_field: np.ndarray,
        posx: float,
        posy: float,
        tol: float = 1e-8,
        dmin: float = 1e-7,
        max_iters: int = 1000,
        def_grad_badness_tol: float = 1e-4,
        ignore_out_of_bounds: bool = False,
        char_x: float | None = None,
        char_y: float | None = None,
    ) -> tuple[np.ndarray, bool]:
        """
        Attempts to find the local coordinates corresponding to the
        given global coordinates (posx,posy). Returns (local_pt,success).
        If a point is found, the returned value is ((x,y),True),
        with local coordinates (x,y).
        Otherwise, there are two cases:
          - ((x,y),False) is returned when descent leads out of the
            domain. A step is forced to stay within the local domain
            (max(|x|,|y|) <= 1), but if a constrained minimum is found on an
            edge with a descent direction pointing outwards, that point
            is returned. If ignore_out_of_bounds is true, the interior checking
            does not occur.
          - ((x,y),False) is returned if a local minimum is found inside the
            domain, but the local->global transformation is too far. This
            should technically not occur if the the deformation gradient stays
            nonsingular, but in the case of ignore_out_of_bounds == True, the
            everywhere-invertibility may not hold.

        The initial guess is chosen as the closest node, and a Newton-Raphson
        step is used along-side a descent algorithm. tol is the stopping parameter
        triggering when the error function (ex^2 + ey^2)/2 < tol in global
        coordinates. dmin is the threshold for when a directional derivative
        is considered zero, providing the second stopping criterion.

        def_grad_badness_tol parameterizes how poorly shaped the element is locally.
        If the coordinate vectors line up close enough,
        or one of the vectors gets too small,
        we can catch that with the expression
        (abs(det(def_grad)) < def_grad_badness_tol*char_x*char_y ),
        and raise an exception.
        Here, char_x and char_y are characteristic lengths of the element,
        and are calculated from pos_field when not defined.

        Args:
            pos_field (np.ndarray): an array representing the positions of the
                    element nodes. This is of the shape `(*basis_shape,2)`.
            posx (float): the x coordinate in global coordinates to find.
            posy (float): the y coordinate in global coordinates to find.
            tol (float, optional): Tolerance of the error function. Defaults to 1e-8.
            dmin (float, optional): The largest size of the gradient for a point to be
                    considered a local minimum. If the descent direction r dotted with
                    the gradient of the error function is less than dmin, then the local
                    minimum condition is met (If the gradient points out of the domain
                    then the dot product may be zero). Defaults to 1e-7.
            max_iters (int, optional): The maximum number of iterations taken.
                    Terminates afterwards, returning ((x,y),False).
            def_grad_badness_tol (float, optional): The minimum allowable badness
                    parameter, after which an error is raised. Defaults to 1e-4.
            ignore_out_of_bounds (bool, optional): Whether or not descent directions can
                    point outside of the domain. If False, then locate_point stays
                    within the element. Defaults to False.
            char_x (float | None, optional): characteristic x-length of the element.
                    When not set, a characteristic value is computed from pos_field,
                    set to approximately the largest length curve of the position field
                    along constant local y. Defaults to None.
            char_y (float | None, optional): characteristic y-length of the element.
                    When not set, a characteristic value is computed from pos_field,
                    set to approximately the largest length curve of the position field
                    along constant local x. Defaults to None.

        Raises:
            DeformationGradient2DBadnessException: if the element is poorly shaped.

        Returns:
            tuple[tuple[float,float],bool]: ((x,y),success), where success is true
            if the error function is less than tol.
        """

        Np1 = self.num_nodes

        if char_x is None:
            # along each x-line, add the distances between nodes
            char_x = np.min(
                np.sum(  # take min across y-values, of x-line sums
                    np.linalg.norm(pos_field[1:, :, :] - pos_field[:-1, :, :], axis=-1),
                    axis=0,
                )
            )

        if char_y is None:
            char_y = np.min(
                np.sum(  # take min across x-values, of y-line sums
                    np.linalg.norm(pos_field[:, 1:, :] - pos_field[:, :-1, :], axis=-1),
                    axis=1,
                )
            )

        target = np.array((posx, posy))
        node_errs = np.sum((pos_field - target) ** 2, axis=-1)
        mindex = np.unravel_index(np.argmin(node_errs), (Np1, Np1))

        # local coords of guess
        local = np.array((self.knots[mindex[0]], self.knots[mindex[1]]))

        # position poly
        # sum(x^{i,j} L_{i,j}) -> [dim,k,l] (coefficient of cx^ky^l for dim)
        x_poly = np.einsum(
            "ijd,ik,jl->dkl", pos_field, self._lagrange_polys, self._lagrange_polys
        )

        # local to global
        def l2g(local):
            return np.einsum(
                "dkl,k,l->d",
                x_poly,
                local[0] ** np.arange(Np1),
                local[1] ** np.arange(Np1),
            )

        e = l2g(local) - target
        F = 0.5 * np.sum(e**2)

        # linsearch on gradient descent
        def linsearch(r, step):
            ARMIJO = 0.25
            err = l2g(local + r * step) - target
            F_new = 0.5 * np.sum(err**2)
            while F_new > F + (ARMIJO * step) * drF:
                step *= 0.5
                err[:] = l2g(local + r * step) - target
                F_new = 0.5 * np.sum(err**2)
            return F_new, step

        def clamp_and_maxstep(r):
            # out of bounds check; biggest possible step is to the boundary;
            # note: uses local[]. Additionally r[] is pass-by reference since it
            # can be modified. This is a feature, since that is the "clamp" part

            step = 1
            if ignore_out_of_bounds:
                return step
            for dim in range(2):  # foreach dim
                if (r[dim] < 0 and local[dim] == -1) or (
                    r[dim] > 0 and local[dim] == 1
                ):
                    # ensure descent direction does not point outside domain
                    # this allows constrained minimization
                    r[dim] = 0
                elif r[dim] != 0:
                    # prevent out-of-bounds step by setting maximum step;
                    if r[dim] > 0:
                        step = min(step, (1 - local[dim]) / r[dim])
                    else:
                        step = min(step, (-1 - local[dim]) / r[dim])
            return step

        iter_ = 0
        while tol < F and iter_ < max_iters:
            iter_ += 1

            # find descent direction by Newton

            # derivative of l2g
            dx_l2g = np.einsum(
                "dkl,k,l->d",
                x_poly[:, 1:, :],
                np.arange(1, Np1) * local[0] ** (np.arange(Np1 - 1)),
                local[1] ** np.arange(Np1),
            )
            dy_l2g = np.einsum(
                "dkl,k,l->d",
                x_poly[:, :, 1:],
                local[0] ** np.arange(Np1),
                np.arange(1, Np1) * local[1] ** (np.arange(Np1 - 1)),
            )

            # check badness
            defgrad_badness = np.abs(
                np.linalg.det([dx_l2g, dy_l2g]) / (char_x * char_y)  # type: ignore
            )
            if defgrad_badness < def_grad_badness_tol:
                raise DeformationGradient2DBadnessException(
                    defgrad_badness, local[0], local[1]
                )

            # grad of err function (ex^2 + ey^2)/2
            dxF = np.dot(e, dx_l2g)
            dyF = np.dot(e, dy_l2g)

            # solve hessian and descent dir
            hxx = np.sum(
                dx_l2g * dx_l2g
                + e
                * np.einsum(
                    "dkl,k,l->d",
                    x_poly[:, 2:, :],
                    np.arange(1, Np1 - 1)
                    * np.arange(2, Np1)
                    * local[0] ** (np.arange(Np1 - 2)),
                    local[1] ** (np.arange(Np1)),
                )
            )
            hxy = np.sum(
                dx_l2g * dy_l2g
                + e
                * np.einsum(
                    "dkl,k,l->d",
                    x_poly[:, 1:, 1:],
                    np.arange(1, Np1) * local[0] ** (np.arange(Np1 - 1)),
                    np.arange(1, Np1) * local[1] ** (np.arange(Np1 - 1)),
                )
            )
            hyy = np.sum(
                dy_l2g * dy_l2g
                + e
                * np.einsum(
                    "dkl,k,l->d",
                    x_poly[:, :, 2:],
                    local[0] ** (np.arange(Np1)),
                    np.arange(1, Np1 - 1)
                    * np.arange(2, Np1)
                    * local[1] ** (np.arange(Np1 - 2)),
                )
            )

            # target newton_rhaphson step
            r_nr = -np.linalg.solve([[hxx, hxy], [hxy, hyy]], [dxF, dyF])

            # target grad desc step
            r_gd = -np.array((dxF, dyF))
            r_gd /= np.linalg.norm(r_gd)  # scale gd step

            # take the better step between Newton-Raphson and grad desc
            s_nr = clamp_and_maxstep(r_nr)
            s_gd = clamp_and_maxstep(r_gd)

            # descent direction -- if dF . r == 0, we found minimum
            drF = dxF * r_gd[0] + dyF * r_gd[1]
            if drF > -dmin:
                break
            F_gd, s_gd = linsearch(r_gd, s_gd)

            # compare to NR
            F_nr = 0.5 * np.sum((l2g(local + r_nr * s_nr) - target) ** 2)
            if F_nr < F_gd:
                local += r_nr * s_nr
                e[:] = l2g(local) - target
                F = F_nr
            else:
                local += r_gd * s_gd
                e[:] = l2g(local) - target
                F = F_gd

            # nudge back in bounds in case of truncation error
            if not ignore_out_of_bounds:
                for dim in range(2):
                    local[dim] = min(1, max(-1, local[dim]))
        return (local, tol > F)

    def lagrange_eval1D(
        self,
        deriv_order: int,
        lag_index: ArrayLike | None = None,
        x: ArrayLike | None = None,
    ) -> NDArray:
        """
        Calculates the derivative
        $[(\\frac{\\partial d}{dx})^{deriv_order} L_{lag_index}(x)]_{x}$

        Note that "lagrange" refers to the lagrange interpolation polynomial,
        not lagrangian coordinates. This is a one-dimension helper function.

        deriv_order is taken as an integer.

        lag_index and x must be broadcastable to the same shape, following
        standard numpy broadcasting rules.

        Since the polynomial coefficient matrix is indexed by lag_index,
        that is, P[lag_index,:] is stored, it is advised that lag_index should
        not have more than one element per index. In other words, lag_index
        should be some subset, reshaping, and/or permutation of arange().

        Args:
            deriv_order (int): the order of the derivative to compute
            lag_index (ArrayLike | None, optional): an array of indices for sampling
                the Lagrange polynomials. If None, then
                `np.arange(degree+1)[:,...]` is used.
                Defaults to None.
            x (ArrayLike | None, optional): an array of points to sample the Lagrange
                polynomials. If None, then `self.knots` is used, and lag_index is
                treated as having an extra axis at the end. That is, the returned array
                has shape (*lag_index.shape, len(self.knots)). Defaults to None.

        Returns:
            NDArray: the result of the evaluation.
        """

        if x is None:
            if deriv_order not in self._lagrange_at_knots:
                self._lagrange_at_knots[deriv_order] = np.einsum(
                    "ik,jk->ij",
                    self.lagrange_poly1D(deriv_order),
                    self.knots[:, np.newaxis]
                    ** np.arange(self.num_nodes - deriv_order),
                )
            if lag_index is None:
                return self._lagrange_at_knots[deriv_order]
            # second index of arange should enforce the broadcastibility

            if not isinstance(lag_index, np.ndarray):
                lag_index = np.array(lag_index)
            return self._lagrange_at_knots[deriv_order][
                lag_index[..., np.newaxis], np.arange(self.num_nodes)
            ]
        if not isinstance(x, np.ndarray):
            x = np.array(x)
        if lag_index is None:
            lag_index = np.arange(self.num_nodes)[
                :, *(np.newaxis for _ in range(len(x.shape)))
            ]
        # out = sum_{k=deriv_order}^{degree}(
        #   k*(k-1)*...*(k-deriv_order+1) * L_poly[lag_index,k] * x^{k-deriv_order}
        #   )

        if not isinstance(lag_index, np.ndarray):
            lag_index = np.array(lag_index)
        return np.einsum(
            "...k,...k->...",
            self.lagrange_poly1D(deriv_order)[lag_index, :],
            np.expand_dims(x, -1) ** np.arange(self.num_nodes - deriv_order),
        )

    @typing.override
    def _compute_field_gradient(
        self,
        field: Field,
        pos_field: Field | None = None,
    ) -> Field:
        """
        Calculates the gradient of a field f, returning a new field.
        The result is an array of shape `(*basis_shape,...,*fieldshape,2)`,
        where field is of shape `(*basis_shape,...,*fieldshape)`.

        The last index is the coordinate of the derivative.

        This gradient can be computed in either reference space (with respect
        to the coordinates of the reference element), or in global space.
        If a global cartesian gradient should be calculated, then pos_field
        must be set to the coordinate matrix of the element. Otherwise,
        pos_field can be kept None.

        Args:
            field (ArrayLike): an array of shape (*basis_shape,...,*fieldshape)
                representing the field to be interpolated.
            pos_field (ArrayLike | None, optional): If set, `pos_field` specifies
                the position fields of the element, and the gradient will be computed in
                Cartesian coordinates. This method supports element-stacking.
                Defaults to None.
            fieldshape (tuple[int,...], optional): the shape of `field` pointwise.
                Defaults to tuple(), representing a scalar field.

        Returns:
            NDArray: an array representing the gradient of the field evaluated
                at each point.
        """

        x_deriv = fnp.einsum(
            ShapeComponent.BASIS,
            "ij,ia->aj",
            field,
            self.lagrange_eval1D(1),
        )
        y_deriv = fnp.einsum(
            ShapeComponent.BASIS,
            "ij,jb->ib",
            field,
            self.lagrange_eval1D(1),
        )
        grad = fnp.stack(
            Field.broadcast_fields_full(x_deriv, y_deriv),
            FieldAxisIndex(ShapeComponent.POINT, len(field.point_shape)),
        )

        if pos_field is not None:
            # (*pointshape,*stackshape,2{i},2{j}): dX^i/dx_j
            # must pad after stackshape
            def_grad = self.compute_field_gradient(pos_field)
            # grad is (*pointshape,*fieldshape,j): dF/dx_j
            # so we need the inverse
            return fnp.einsum(
                ShapeComponent.POINT,
                "ji,...j->...i",
                fnp.linalg.inv(def_grad),
                grad,
            )

        return grad

    @typing.override
    def _interpolate_field_gradient(
        self,
        field: Field,
        X: NDArray,
        Y: NDArray,
        pos_field: Field | None = None,
    ) -> Field:
        """
        Calculates the gradient of a field f at the reference coordinates (X,Y).
        The result is an array of shape `(...,*fieldshape,2)`,
        where field is of shape `(*basis_shape,...,*fieldshape)`.

        X and Y must have compatible shape.

        The last index is the coordinate of the derivative.

        This gradient can be computed in either reference space (with respect
        to the coordinates of the reference element), or in global space.
        If a global cartesian gradient should be calculated, then pos_field
        must be set to the coordinate matrix of the element. Otherwise,
        pos_field can be kept None.

        Args:
            field (ArrayLike): an array of shape (*basis_shape,*fieldshape)
                representing the field to be interpolated.
            X (ArrayLike): x values (in reference coordinates).
            Y (ArrayLike): y values (in reference coordinates).
            pos_field (ArrayLike | None, optional): If set, `pos_field` specifies
                the position fields of the element, and the gradient will be computed in
                Cartesian coordinates. Defaults to None.
            fieldshape (tuple[int,...], optional): the shape of `field` pointwise.
                Defaults to tuple(), representing a scalar field.

        Returns:
            NDArray: an array representing the gradient of the field evaluated
                at each point.
        """

        x_deriv = fnp.einsum(
            ShapeComponent.BASIS,
            "ij,i...,j...->...",
            field,
            self.lagrange_eval1D(1, x=X),
            self.lagrange_eval1D(0, x=Y),
        )
        y_deriv = fnp.einsum(
            ShapeComponent.BASIS,
            "ij,i...,j...->...",
            field,
            self.lagrange_eval1D(0, x=X),
            self.lagrange_eval1D(1, x=Y),
        )
        grad = fnp.stack(
            Field.broadcast_fields_full(x_deriv, y_deriv),
            FieldAxisIndex(ShapeComponent.POINT, len(field.point_shape)),
        )

        if pos_field is not None:
            # (*pointshape,*stackshape*,2{i},2{j}): dX^i/dx_j
            def_grad = self.interpolate_field_gradient(pos_field, X, Y)
            # grad is (*pointshape,*fieldshape,j): dF/dx_j
            # so we need the inverse
            return fnp.einsum(
                ShapeComponent.POINT, "...ji,...j->...i", fnp.linalg.inv(def_grad), grad
            )

        return grad

    @typing.override
    def _integrate_field(
        self,
        pos_field: Field,
        field: Field,
        jacobian_scale: Field = Field((), (), 1),  # NOQA: B008
    ) -> Field:
        """
        Integrates `field` $f$ over the element. The result is the value of
        $\\int \\alpha f ~dV$ over the element, as an array of shape
        `(...,*point_shape)`.

        Args:
            pos_field (ArrayLike): an array representing the positions of the
                    element nodes. This is of the shape `(basis_shape,...,2)`
            field (ArrayLike): an array of shape (*basis_shape,...,*fieldshape)
                representing the field to be interpolated.
            fieldshape (tuple[int,...], optional): the shape of `field` pointwise.
                Defaults to tuple(), representing a scalar field.
            jacobian_scale (ArrayLike, optional): an array of shape
                `(*basis_shape,...)` representing the scalar factor $\\alpha$.
                Defaults to 1.

        Returns:
            NDArray: The resultant integral, an array of shape `(...,*fieldshape)`.
        """
        Jw = fnp.einsum(
            ShapeComponent.BASIS,
            "i,j,ij,ij->ij",
            self.weights,
            self.weights,
            fnp.abs(fnp.linalg.det(self.compute_field_gradient(pos_field))),
            jacobian_scale,
        )
        return fnp.einsum(ShapeComponent.BASIS, "ij,ij->...", Jw, field)

    @typing.override
    def _integrate_basis_times_field(
        self,
        pos_field: Field,
        field: Field,
        indices: colltypes.Sequence[ArrayLike] | None = None,
        jacobian_scale: Field = Field((), (), 1),  # NOQA: B008
    ) -> Field:
        """
        Computes the integral $\\int \\alpha \\phi_i f ~ dV$
        for fields $f$ and $\\alpha$, on this element, given by `field` and
        `jacobian_scale`, respectively. When None, `jacobian_scale` is interpreted
        as the identity.

        Args:
            pos_field (ArrayLike): an array representing the positions of the
                    element nodes. This is of the shape `(basis_shape,...,2)`
            field (ArrayLike): an array of shape `(*basis_shape,...,*fieldshape)`
                representing the field to be interpolated.
            fieldshape (tuple[int,...], optional): the shape of `field` pointwise.
                Defaults to tuple(), representing a scalar field.
            indices (colltypes.Sequence[ArrayLike] | None, optional): Indices of the basis
                    functions to integrate against, or None if the integral should be
                    computed against every basis field. Defaults to None.
            jacobian_scale (ArrayLike, optional): an array of shape
                `(*basis_shape,...)` representing the scalar factor $\\alpha$.
                Defaults to 1.

        Returns:
            NDArray: The resultant integral, an array of shape
                `(indices.shape,...,*fieldshape)`, or `(*basis_shape,...,*fieldshape)`
                if `indices` is None.
        """
        Jw = fnp.einsum(
            ShapeComponent.BASIS,
            "i,j,ij,ij->ij",
            self.weights,
            self.weights,
            fnp.abs(fnp.linalg.det(self.compute_field_gradient(pos_field))),
            jacobian_scale,
        )
        if indices is None:
            return fnp.einsum(ShapeComponent.BASIS, "ij,ij->ij", Jw, field)
        return fnp.einsum(ShapeComponent.BASIS, "ij,ij->ij", Jw, field).basis[
            *indices, ...
        ]

    @typing.override
    def _mass_matrix(
        self,
        pos_field: Field,
        indices: colltypes.Sequence[np.ndarray] | None = None,
        jacobian_scale: Field = Field((), (), 1),  # NOQA: B008
    ) -> Field:
        """
        Recovers the mass matrix entries $\\int \\alpha \\phi_i \\phi_j ~ dV$
        for this element. `pos_field` has shape `(basis_shape,...,2)`, where the
        ellipses represent element stacking.

        The full mass matrix is of shape
        `(*basis_shape, *basis_shape,...)`, where the last indices match the element
        stack, but slices of the mass matrix can be
        obtained by passing into the `indices` argument. The implementation of
        `basis_mass_matrix` should assume that `indices` argument is smaller than the
        whole matrix, so if `M[*indices]` is larger than `M`, one should use
        `basis_mass_matrix(pos_field)[*indices,...]` instead of
        `basis_mass_matrix(pos_field,indices)`.

        Args:
            pos_field (ArrayLike): an array representing the positions of the
                    element nodes. This is of the shape `(basis_shape,...,2)`
            indices (colltypes.Sequence[ArrayLike] | None, optional): Indices of the mass
                    matrix to access, or None if the whole matrix should be returned.
                    Defaults to None.
            jacobian_scale (ArrayLike, optional): an array of shape
                `(*basis_shape,...)` representing the scalar factor $\\alpha$.
                Defaults to 1.

        Returns:
            NDArray: an array representing the mass matrix, or portions thereof.
        """
        # compute using GLL quadrature

        # int (phi1 * phi2) = sum_i(phi1(x_i) phi2(x_i) w_i * J(x_i))

        # weights [i,j] times jacobian

        Jw = fnp.einsum(
            ShapeComponent.BASIS,
            "i,j,ij,ij->ij",
            self.weights,
            self.weights,
            fnp.abs(fnp.linalg.det(self.compute_field_gradient(pos_field))),
            jacobian_scale,
        )
        basis_dims = len(self.basis_shape())
        if indices is None:
            double_basis = fnp.moveaxis(
                fnp.moveaxis(
                    self.basis_fields(),
                    (ShapeComponent.STACK, 1),
                    (ShapeComponent.BASIS, 0),
                ),
                (ShapeComponent.STACK, 0),
                (ShapeComponent.BASIS, 0),
            )
            return fnp.einsum(
                ShapeComponent.BASIS, "ijkl,...kl->ijkl", double_basis, Jw
            )
        indsI = np.array(indices[:basis_dims], dtype=int)
        indsJ = np.array(indices[basis_dims:], dtype=int)
        # TODO create fnp.where
        aux_pad = tuple(
            np.newaxis
            for _ in range(
                len(Jw.shape) - Jw._axis_field_to_numpy((ShapeComponent.BASIS, -1)) - 1
            )
        )
        Jw = Jw.basis[*indsJ]
        return Field(
            indsJ.shape,
            (),
            np.where(
                np.logical_and(
                    indsI[0, ...] == indsJ[0, ...], indsI[1, ...] == indsJ[1, ...]
                )[..., *aux_pad],
                Jw.coefficients,
                0,
            ),
            shape_order=Jw.shape_order,
        )

    @typing.override
    def _integrate_grad_basis_dot_field(
        self,
        pos_field: Field,
        field: Field,
        indices: colltypes.Sequence[ArrayLike] | None = None,
        jacobian_scale: Field = Field((), (), 1),  # NOQA: B008
    ) -> Field:
        """
        Computes the integral $\\int \\alpha \\nabla \\phi_i \\cdot f ~ dV$
        for a field $f$, on this element. The dot product takes the last axis of
        `field`, which must have size equal to the domain dimension.

        Args:
            pos_field (ArrayLike): an array representing the positions of the
                    element nodes. This is of the shape `(basis_shape,...,2)`
            field (ArrayLike): an array of shape (*basis_shape,...,*fieldshape)
                representing the field to be interpolated.
            is_field_upper_index (bool): True if the last axis of field is treated as
                an upper (contravariant / vector) index. False if it is a lower
                (covariant / covector) index.
            fieldshape (tuple[int,...], optional): the shape of `field` pointwise.
                Defaults to tuple(), representing a scalar field.
            indices (colltypes.Sequence[ArrayLike] | None, optional): Indices of the basis
                    functions to integrate against, or None if the integral should be
                    computed against every basis field. Defaults to None.
            jacobian_scale (ArrayLike, optional): an array of shape
                `(*basis_shape,...)` representing the scalar factor $\\alpha$.
                Defaults to 1.

        Returns:
            NDArray: The resultant integral, an array of shape
                `(indices.shape,...,*fieldshape)`, or `(*basis_shape,...,*fieldshape)`
                if `indices` is None.
        """

        def_grad = self.compute_field_gradient(pos_field)  # ^g_l
        # int (grad phi1 . grad field)
        w = fnp.einsum(
            ShapeComponent.BASIS,
            "i,j,ij,ij->ij",
            self.weights,
            self.weights,
            fnp.abs(fnp.linalg.det(def_grad)),
            jacobian_scale,
        )
        # [k,i] L_k'(x_i)
        lag_div = self.lagrange_eval1D(1)
        # [i,j,...,dim] partial_dim field(xi,xj)

        def_grad_inv = fnp.linalg.inv(def_grad)  # ^l_g
        field_local_upper = fnp.einsum(
            ShapeComponent.POINT,
            "lg,...g->...l",
            def_grad_inv,
            field,
        )

        # integrand is
        # [ field(xi,xj) ] * [ partial_dim (L_m(xi)L_n(xj)) ]
        # where partial_dim (L_m(xi)L_n(xj)) = {dim==0: L_m'(xi)L_n(xj), dim==1: L_m(xi)L_n'(xj)}
        #                  = delta_{dim,0} delta_{nj} L_m'(xi) + delta_{dim,1} delta_{mi} L_n'(xj)

        # full integral is
        # [ field(xi,xj) ] * [ partial_dim (L_m(xi)L_n(xj)) ] * w_{ij}
        # = field(xi,xj) (delta_{dim,0} delta_{nj} L_m'(xi) + delta_{dim,1} delta_{mi} L_n'(xj)) w_{ij}
        # = (field(xi,xj)) delta_{dim,0} delta_{nj} L_m'(xi)w_{ij}
        #           + (field(xi,xj)) delta_{dim,1} delta_{mi} L_n'(xj) w_{ij}
        # = (field_0(xi,xn)) L_m'(xi)w_{in} + (field_1(xm,xj)) L_n'(xj) w_{mj}

        KF = fnp.einsum(
            ShapeComponent.BASIS,
            "in,mi,in->mn",
            field_local_upper.point[..., 0],
            lag_div,
            w,
        ) + fnp.einsum(
            ShapeComponent.BASIS,
            "mj,nj,mj->mn",
            field_local_upper.point[..., 1],
            lag_div,
            w,
        )
        if indices is None:
            return KF
        return KF.basis[*indices, ...]

    @typing.override
    def _integrate_grad_basis_dot_grad_field(
        self,
        pos_field: Field,
        field: Field,
        indices: colltypes.Sequence[ArrayLike] | None = None,
        jacobian_scale: Field = Field((), (), 1),  # NOQA: B008
    ) -> Field:
        """
        Computes the integral $\\int \\alpha \\nabla \\phi_i \\cdot \\nabla f ~ dV$
        for a field $f$, on this element. The dot product is over the gradients.

        Args:
            pos_field (ArrayLike): an array representing the positions of the
                    element nodes. This is of the shape `(basis_shape,...,2)`
            field (ArrayLike): an array of shape (*basis_shape,...,*fieldshape)
                representing the field to be interpolated.
            fieldshape (tuple[int,...]): the shape of `field` pointwise.
            indices (colltypes.Sequence[ArrayLike] | None, optional): Indices of the basis
                    functions to integrate against, or None if the integral should be
                    computed against every basis field. Defaults to None.
            jacobian_scale (ArrayLike, optional): an array of shape
                `(*basis_shape,...)` representing the scalar factor $\\alpha$.
                Defaults to 1.

        Returns:
            NDArray: The resultant integral, an array of shape
                `(indices.shape,...,*fieldshape)`, or `(*basis_shape,...,*fieldshape)`
                if `indices` is None.
        """
        # compute using GLL quadrature

        def_grad = self.compute_field_gradient(pos_field)
        # int (grad phi1 . grad field)
        w = fnp.einsum(
            ShapeComponent.BASIS,
            "i,j,ij,ij->ij",
            self.weights,
            self.weights,
            fnp.abs(fnp.linalg.det(def_grad)),
            jacobian_scale,
        )
        # [k,i] L_k'(x_i)
        lag_div = self.lagrange_eval1D(1)
        # [i,j,...,dim] partial_dim field(xi,xj)

        grad_field_form = self.compute_field_gradient(field)
        def_grad_inv = fnp.linalg.inv(def_grad)
        grad_field = fnp.einsum(
            ShapeComponent.POINT,
            "ab,db,...d->...a",
            def_grad_inv,
            def_grad_inv,
            grad_field_form,
        )

        # integrand is
        # [ partial_dim field(xi,xj) ] * [ partial_dim (L_m(xi)L_n(xj)) ]
        # where partial_dim (L_m(xi)L_n(xj)) = {dim==0: L_m'(xi)L_n(xj), dim==1: L_m(xi)L_n'(xj)}
        #                  = delta_{dim,0} delta_{nj} L_m'(xi) + delta_{dim,1} delta_{mi} L_n'(xj)

        # full integral is
        # [ partial_dim field(xi,xj) ] * [ partial_dim (L_m(xi)L_n(xj)) ] * w_{ij}
        # = partial_dim field(xi,xj) (delta_{dim,0} delta_{nj} L_m'(xi) + delta_{dim,1} delta_{mi} L_n'(xj)) w_{ij}
        # = (partial_dim field(xi,xj)) delta_{dim,0} delta_{nj} L_m'(xi)w_{ij}
        #           + (partial_dim field(xi,xj)) delta_{dim,1} delta_{mi} L_n'(xj) w_{ij}
        # = (partial_0 field(xi,xn)) L_m'(xi)w_{in} + (partial_1 field(xm,xj)) L_n'(xj) w_{mj}

        KF = fnp.einsum(
            ShapeComponent.BASIS, "in,mi,in->mn", grad_field.point[..., 0], lag_div, w
        ) + fnp.einsum(
            ShapeComponent.BASIS, "mj,nj,mj->mn", grad_field.point[..., 1], lag_div, w
        )
        if indices is None:
            return KF
        return KF.basis[*indices, ...]  # type: ignore

basis_shape()

Returns a tuple representing the shape of the array corresponding to the basis coefficients. A scalar field f, given as an array is expected to have shape f.shape == element.basis_shape()

Source code in fastfem/elements/spectral_element2d.py
@typing.override
def basis_shape(self) -> tuple[int, ...]:
    """Returns a tuple representing the shape of the array corresponding to the
    basis coefficients. A scalar field `f`, given as an array is expected to have
    shape `f.shape == element.basis_shape()`
    """
    return (self.num_nodes, self.num_nodes)

reference_element_position_field()

The position field of the reference (un-transformed) element. This is a vector field.

Returns:

  • Field ( Field ) –

    An array of shape (*element.basis_shape(), 2)

Source code in fastfem/elements/spectral_element2d.py
@typing.override
def reference_element_position_field(self) -> Field:
    """
    The position field of the reference (un-transformed) element. This is a vector
    field.

    Returns:
        Field: An array of shape `(*element.basis_shape(), 2)`
    """
    out = np.empty((self.num_nodes, self.num_nodes, 2))
    out[:, :, 0] = self.knots[:, np.newaxis]
    out[:, :, 1] = self.knots[np.newaxis, :]
    return self.Field(out, False, (2,))

lagrange_poly1D(deriv_order=0)

Returns the polynomial coefficients P[i,k], where $\frac{d^{r}}{dx^{r}} L_{i}(x) = \sum_k P[i,k] x^k$ with $r$ as deriv_order.

deriv_order (default 0)

Parameters:

  • deriv_order (int, default: 0 ) –

    The order $r$ of the derivative. This is expected to be an integer between 0 (inclusive) and degree+1 (exclusive), but this check is not done. Defaults to 0.

Returns:

  • NDArray

    np.ndarray: The coefficient array P[i,k] which is of shape

  • NDArray

    (degree + 1, degree + 1 - deriv_order)

Source code in fastfem/elements/spectral_element2d.py
def lagrange_poly1D(self, deriv_order: int = 0) -> NDArray:
    """
    Returns the polynomial coefficients `P[i,k]`, where
    $\\frac{d^{r}}{dx^{r}} L_{i}(x) = \\sum_k P[i,k] x^k$ with $r$ as `deriv_order`.

    deriv_order (default 0)

    Args:
        deriv_order (int, optional): The order $r$ of the derivative. This is
            expected to be an integer between 0 (inclusive) and degree+1 (exclusive),
            but this check is not done. Defaults to 0.

    Returns:
        np.ndarray: The coefficient array `P[i,k]` which is of shape
        `(degree + 1, degree + 1 - deriv_order)`
    """
    if deriv_order in self._lagrange_derivs:
        return self._lagrange_derivs[deriv_order]

    # inefficient partial partition calc, but only done once, so...
    coefs = self._lagrange_polys
    for _ in range(deriv_order):
        coefs = coefs[:, 1:] * np.arange(1, coefs.shape[1])

    self._lagrange_derivs[deriv_order] = coefs
    return coefs

locate_point(pos_field, posx, posy, tol=1e-08, dmin=1e-07, max_iters=1000, def_grad_badness_tol=0.0001, ignore_out_of_bounds=False, char_x=None, char_y=None)

Attempts to find the local coordinates corresponding to the given global coordinates (posx,posy). Returns (local_pt,success). If a point is found, the returned value is ((x,y),True), with local coordinates (x,y). Otherwise, there are two cases: - ((x,y),False) is returned when descent leads out of the domain. A step is forced to stay within the local domain (max(|x|,|y|) <= 1), but if a constrained minimum is found on an edge with a descent direction pointing outwards, that point is returned. If ignore_out_of_bounds is true, the interior checking does not occur. - ((x,y),False) is returned if a local minimum is found inside the domain, but the local->global transformation is too far. This should technically not occur if the the deformation gradient stays nonsingular, but in the case of ignore_out_of_bounds == True, the everywhere-invertibility may not hold.

The initial guess is chosen as the closest node, and a Newton-Raphson step is used along-side a descent algorithm. tol is the stopping parameter triggering when the error function (ex^2 + ey^2)/2 < tol in global coordinates. dmin is the threshold for when a directional derivative is considered zero, providing the second stopping criterion.

def_grad_badness_tol parameterizes how poorly shaped the element is locally. If the coordinate vectors line up close enough, or one of the vectors gets too small, we can catch that with the expression (abs(det(def_grad)) < def_grad_badness_tolchar_xchar_y ), and raise an exception. Here, char_x and char_y are characteristic lengths of the element, and are calculated from pos_field when not defined.

Parameters:

  • pos_field (ndarray) –

    an array representing the positions of the element nodes. This is of the shape (*basis_shape,2).

  • posx (float) –

    the x coordinate in global coordinates to find.

  • posy (float) –

    the y coordinate in global coordinates to find.

  • tol (float, default: 1e-08 ) –

    Tolerance of the error function. Defaults to 1e-8.

  • dmin (float, default: 1e-07 ) –

    The largest size of the gradient for a point to be considered a local minimum. If the descent direction r dotted with the gradient of the error function is less than dmin, then the local minimum condition is met (If the gradient points out of the domain then the dot product may be zero). Defaults to 1e-7.

  • max_iters (int, default: 1000 ) –

    The maximum number of iterations taken. Terminates afterwards, returning ((x,y),False).

  • def_grad_badness_tol (float, default: 0.0001 ) –

    The minimum allowable badness parameter, after which an error is raised. Defaults to 1e-4.

  • ignore_out_of_bounds (bool, default: False ) –

    Whether or not descent directions can point outside of the domain. If False, then locate_point stays within the element. Defaults to False.

  • char_x (float | None, default: None ) –

    characteristic x-length of the element. When not set, a characteristic value is computed from pos_field, set to approximately the largest length curve of the position field along constant local y. Defaults to None.

  • char_y (float | None, default: None ) –

    characteristic y-length of the element. When not set, a characteristic value is computed from pos_field, set to approximately the largest length curve of the position field along constant local x. Defaults to None.

Raises:

  • DeformationGradient2DBadnessException

    if the element is poorly shaped.

Returns:

  • ndarray

    tuple[tuple[float,float],bool]: ((x,y),success), where success is true

  • bool

    if the error function is less than tol.

Source code in fastfem/elements/spectral_element2d.py
def locate_point(
    self,
    pos_field: np.ndarray,
    posx: float,
    posy: float,
    tol: float = 1e-8,
    dmin: float = 1e-7,
    max_iters: int = 1000,
    def_grad_badness_tol: float = 1e-4,
    ignore_out_of_bounds: bool = False,
    char_x: float | None = None,
    char_y: float | None = None,
) -> tuple[np.ndarray, bool]:
    """
    Attempts to find the local coordinates corresponding to the
    given global coordinates (posx,posy). Returns (local_pt,success).
    If a point is found, the returned value is ((x,y),True),
    with local coordinates (x,y).
    Otherwise, there are two cases:
      - ((x,y),False) is returned when descent leads out of the
        domain. A step is forced to stay within the local domain
        (max(|x|,|y|) <= 1), but if a constrained minimum is found on an
        edge with a descent direction pointing outwards, that point
        is returned. If ignore_out_of_bounds is true, the interior checking
        does not occur.
      - ((x,y),False) is returned if a local minimum is found inside the
        domain, but the local->global transformation is too far. This
        should technically not occur if the the deformation gradient stays
        nonsingular, but in the case of ignore_out_of_bounds == True, the
        everywhere-invertibility may not hold.

    The initial guess is chosen as the closest node, and a Newton-Raphson
    step is used along-side a descent algorithm. tol is the stopping parameter
    triggering when the error function (ex^2 + ey^2)/2 < tol in global
    coordinates. dmin is the threshold for when a directional derivative
    is considered zero, providing the second stopping criterion.

    def_grad_badness_tol parameterizes how poorly shaped the element is locally.
    If the coordinate vectors line up close enough,
    or one of the vectors gets too small,
    we can catch that with the expression
    (abs(det(def_grad)) < def_grad_badness_tol*char_x*char_y ),
    and raise an exception.
    Here, char_x and char_y are characteristic lengths of the element,
    and are calculated from pos_field when not defined.

    Args:
        pos_field (np.ndarray): an array representing the positions of the
                element nodes. This is of the shape `(*basis_shape,2)`.
        posx (float): the x coordinate in global coordinates to find.
        posy (float): the y coordinate in global coordinates to find.
        tol (float, optional): Tolerance of the error function. Defaults to 1e-8.
        dmin (float, optional): The largest size of the gradient for a point to be
                considered a local minimum. If the descent direction r dotted with
                the gradient of the error function is less than dmin, then the local
                minimum condition is met (If the gradient points out of the domain
                then the dot product may be zero). Defaults to 1e-7.
        max_iters (int, optional): The maximum number of iterations taken.
                Terminates afterwards, returning ((x,y),False).
        def_grad_badness_tol (float, optional): The minimum allowable badness
                parameter, after which an error is raised. Defaults to 1e-4.
        ignore_out_of_bounds (bool, optional): Whether or not descent directions can
                point outside of the domain. If False, then locate_point stays
                within the element. Defaults to False.
        char_x (float | None, optional): characteristic x-length of the element.
                When not set, a characteristic value is computed from pos_field,
                set to approximately the largest length curve of the position field
                along constant local y. Defaults to None.
        char_y (float | None, optional): characteristic y-length of the element.
                When not set, a characteristic value is computed from pos_field,
                set to approximately the largest length curve of the position field
                along constant local x. Defaults to None.

    Raises:
        DeformationGradient2DBadnessException: if the element is poorly shaped.

    Returns:
        tuple[tuple[float,float],bool]: ((x,y),success), where success is true
        if the error function is less than tol.
    """

    Np1 = self.num_nodes

    if char_x is None:
        # along each x-line, add the distances between nodes
        char_x = np.min(
            np.sum(  # take min across y-values, of x-line sums
                np.linalg.norm(pos_field[1:, :, :] - pos_field[:-1, :, :], axis=-1),
                axis=0,
            )
        )

    if char_y is None:
        char_y = np.min(
            np.sum(  # take min across x-values, of y-line sums
                np.linalg.norm(pos_field[:, 1:, :] - pos_field[:, :-1, :], axis=-1),
                axis=1,
            )
        )

    target = np.array((posx, posy))
    node_errs = np.sum((pos_field - target) ** 2, axis=-1)
    mindex = np.unravel_index(np.argmin(node_errs), (Np1, Np1))

    # local coords of guess
    local = np.array((self.knots[mindex[0]], self.knots[mindex[1]]))

    # position poly
    # sum(x^{i,j} L_{i,j}) -> [dim,k,l] (coefficient of cx^ky^l for dim)
    x_poly = np.einsum(
        "ijd,ik,jl->dkl", pos_field, self._lagrange_polys, self._lagrange_polys
    )

    # local to global
    def l2g(local):
        return np.einsum(
            "dkl,k,l->d",
            x_poly,
            local[0] ** np.arange(Np1),
            local[1] ** np.arange(Np1),
        )

    e = l2g(local) - target
    F = 0.5 * np.sum(e**2)

    # linsearch on gradient descent
    def linsearch(r, step):
        ARMIJO = 0.25
        err = l2g(local + r * step) - target
        F_new = 0.5 * np.sum(err**2)
        while F_new > F + (ARMIJO * step) * drF:
            step *= 0.5
            err[:] = l2g(local + r * step) - target
            F_new = 0.5 * np.sum(err**2)
        return F_new, step

    def clamp_and_maxstep(r):
        # out of bounds check; biggest possible step is to the boundary;
        # note: uses local[]. Additionally r[] is pass-by reference since it
        # can be modified. This is a feature, since that is the "clamp" part

        step = 1
        if ignore_out_of_bounds:
            return step
        for dim in range(2):  # foreach dim
            if (r[dim] < 0 and local[dim] == -1) or (
                r[dim] > 0 and local[dim] == 1
            ):
                # ensure descent direction does not point outside domain
                # this allows constrained minimization
                r[dim] = 0
            elif r[dim] != 0:
                # prevent out-of-bounds step by setting maximum step;
                if r[dim] > 0:
                    step = min(step, (1 - local[dim]) / r[dim])
                else:
                    step = min(step, (-1 - local[dim]) / r[dim])
        return step

    iter_ = 0
    while tol < F and iter_ < max_iters:
        iter_ += 1

        # find descent direction by Newton

        # derivative of l2g
        dx_l2g = np.einsum(
            "dkl,k,l->d",
            x_poly[:, 1:, :],
            np.arange(1, Np1) * local[0] ** (np.arange(Np1 - 1)),
            local[1] ** np.arange(Np1),
        )
        dy_l2g = np.einsum(
            "dkl,k,l->d",
            x_poly[:, :, 1:],
            local[0] ** np.arange(Np1),
            np.arange(1, Np1) * local[1] ** (np.arange(Np1 - 1)),
        )

        # check badness
        defgrad_badness = np.abs(
            np.linalg.det([dx_l2g, dy_l2g]) / (char_x * char_y)  # type: ignore
        )
        if defgrad_badness < def_grad_badness_tol:
            raise DeformationGradient2DBadnessException(
                defgrad_badness, local[0], local[1]
            )

        # grad of err function (ex^2 + ey^2)/2
        dxF = np.dot(e, dx_l2g)
        dyF = np.dot(e, dy_l2g)

        # solve hessian and descent dir
        hxx = np.sum(
            dx_l2g * dx_l2g
            + e
            * np.einsum(
                "dkl,k,l->d",
                x_poly[:, 2:, :],
                np.arange(1, Np1 - 1)
                * np.arange(2, Np1)
                * local[0] ** (np.arange(Np1 - 2)),
                local[1] ** (np.arange(Np1)),
            )
        )
        hxy = np.sum(
            dx_l2g * dy_l2g
            + e
            * np.einsum(
                "dkl,k,l->d",
                x_poly[:, 1:, 1:],
                np.arange(1, Np1) * local[0] ** (np.arange(Np1 - 1)),
                np.arange(1, Np1) * local[1] ** (np.arange(Np1 - 1)),
            )
        )
        hyy = np.sum(
            dy_l2g * dy_l2g
            + e
            * np.einsum(
                "dkl,k,l->d",
                x_poly[:, :, 2:],
                local[0] ** (np.arange(Np1)),
                np.arange(1, Np1 - 1)
                * np.arange(2, Np1)
                * local[1] ** (np.arange(Np1 - 2)),
            )
        )

        # target newton_rhaphson step
        r_nr = -np.linalg.solve([[hxx, hxy], [hxy, hyy]], [dxF, dyF])

        # target grad desc step
        r_gd = -np.array((dxF, dyF))
        r_gd /= np.linalg.norm(r_gd)  # scale gd step

        # take the better step between Newton-Raphson and grad desc
        s_nr = clamp_and_maxstep(r_nr)
        s_gd = clamp_and_maxstep(r_gd)

        # descent direction -- if dF . r == 0, we found minimum
        drF = dxF * r_gd[0] + dyF * r_gd[1]
        if drF > -dmin:
            break
        F_gd, s_gd = linsearch(r_gd, s_gd)

        # compare to NR
        F_nr = 0.5 * np.sum((l2g(local + r_nr * s_nr) - target) ** 2)
        if F_nr < F_gd:
            local += r_nr * s_nr
            e[:] = l2g(local) - target
            F = F_nr
        else:
            local += r_gd * s_gd
            e[:] = l2g(local) - target
            F = F_gd

        # nudge back in bounds in case of truncation error
        if not ignore_out_of_bounds:
            for dim in range(2):
                local[dim] = min(1, max(-1, local[dim]))
    return (local, tol > F)

lagrange_eval1D(deriv_order, lag_index=None, x=None)

Calculates the derivative $[(\frac{\partial d}{dx})^{deriv_order} L_{lag_index}(x)]_{x}$

Note that "lagrange" refers to the lagrange interpolation polynomial, not lagrangian coordinates. This is a one-dimension helper function.

deriv_order is taken as an integer.

lag_index and x must be broadcastable to the same shape, following standard numpy broadcasting rules.

Since the polynomial coefficient matrix is indexed by lag_index, that is, P[lag_index,:] is stored, it is advised that lag_index should not have more than one element per index. In other words, lag_index should be some subset, reshaping, and/or permutation of arange().

Parameters:

  • deriv_order (int) –

    the order of the derivative to compute

  • lag_index (ArrayLike | None, default: None ) –

    an array of indices for sampling the Lagrange polynomials. If None, then np.arange(degree+1)[:,...] is used. Defaults to None.

  • x (ArrayLike | None, default: None ) –

    an array of points to sample the Lagrange polynomials. If None, then self.knots is used, and lag_index is treated as having an extra axis at the end. That is, the returned array has shape (*lag_index.shape, len(self.knots)). Defaults to None.

Returns:

  • NDArray ( NDArray ) –

    the result of the evaluation.

Source code in fastfem/elements/spectral_element2d.py
def lagrange_eval1D(
    self,
    deriv_order: int,
    lag_index: ArrayLike | None = None,
    x: ArrayLike | None = None,
) -> NDArray:
    """
    Calculates the derivative
    $[(\\frac{\\partial d}{dx})^{deriv_order} L_{lag_index}(x)]_{x}$

    Note that "lagrange" refers to the lagrange interpolation polynomial,
    not lagrangian coordinates. This is a one-dimension helper function.

    deriv_order is taken as an integer.

    lag_index and x must be broadcastable to the same shape, following
    standard numpy broadcasting rules.

    Since the polynomial coefficient matrix is indexed by lag_index,
    that is, P[lag_index,:] is stored, it is advised that lag_index should
    not have more than one element per index. In other words, lag_index
    should be some subset, reshaping, and/or permutation of arange().

    Args:
        deriv_order (int): the order of the derivative to compute
        lag_index (ArrayLike | None, optional): an array of indices for sampling
            the Lagrange polynomials. If None, then
            `np.arange(degree+1)[:,...]` is used.
            Defaults to None.
        x (ArrayLike | None, optional): an array of points to sample the Lagrange
            polynomials. If None, then `self.knots` is used, and lag_index is
            treated as having an extra axis at the end. That is, the returned array
            has shape (*lag_index.shape, len(self.knots)). Defaults to None.

    Returns:
        NDArray: the result of the evaluation.
    """

    if x is None:
        if deriv_order not in self._lagrange_at_knots:
            self._lagrange_at_knots[deriv_order] = np.einsum(
                "ik,jk->ij",
                self.lagrange_poly1D(deriv_order),
                self.knots[:, np.newaxis]
                ** np.arange(self.num_nodes - deriv_order),
            )
        if lag_index is None:
            return self._lagrange_at_knots[deriv_order]
        # second index of arange should enforce the broadcastibility

        if not isinstance(lag_index, np.ndarray):
            lag_index = np.array(lag_index)
        return self._lagrange_at_knots[deriv_order][
            lag_index[..., np.newaxis], np.arange(self.num_nodes)
        ]
    if not isinstance(x, np.ndarray):
        x = np.array(x)
    if lag_index is None:
        lag_index = np.arange(self.num_nodes)[
            :, *(np.newaxis for _ in range(len(x.shape)))
        ]
    # out = sum_{k=deriv_order}^{degree}(
    #   k*(k-1)*...*(k-deriv_order+1) * L_poly[lag_index,k] * x^{k-deriv_order}
    #   )

    if not isinstance(lag_index, np.ndarray):
        lag_index = np.array(lag_index)
    return np.einsum(
        "...k,...k->...",
        self.lagrange_poly1D(deriv_order)[lag_index, :],
        np.expand_dims(x, -1) ** np.arange(self.num_nodes - deriv_order),
    )