fastfem.fields
¶
Field
dataclass
¶
A class responsible for storing fields on elements as an NDArray
of coefficients.
There are 3 relevant shapes / axis sets to a field:
-
basis_shape
- The shape of the basis. These axes represent the multi-index for the basis function. -
stack_shape
- The shape of the element stack. These axes represent the multi-index for the element. -
point_shape
- The shape of the field. These axes represent the pointwise, per-element tensor index.
The shape of coefficients
will be some permutation of
stack_shape + point_shape + basis_shape
. The order is specified by shape_order
,
which is a 3-tuple (stack_location, field_location, basis_location)
, where each
entry is an integer specifying the position relative to the other two shapes.
Source code in fastfem/fields/field.py
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 |
|
get_shape(component)
¶
Recovers the shape of the specified component. This shape is in the same format as numpy.shape, that is a tuple.
Parameters:
-
component
(ShapeComponent
) –The component to sample
Returns:
-
tuple[int, ...]
–tuple[int,...]: The shape of the specified component.
Source code in fastfem/fields/field.py
broadcast_to_shape(stack_shape, basis_shape, point_shape, complete_broadcast=True)
¶
This function is related to the numpy broadcast_to function. https://numpy.org/doc/stable/reference/generated/numpy.broadcast_to.html#numpy.broadcast_to
The shape of the desired array is given as separate tuples for each component.
Instead of the subok
optional argument, the returned field will always have
the same coefficient array type. Additionally, the value of use_jax
is inherited.
Parameters:
-
stack_shape
(tuple[int, ...] | None
) –The shape for the stack shape to be broadcasted to, or None, if the shape should be kept as-is.
-
basis_shape
(tuple[int, ...] | None
) –The shape for the basis shape to be broadcasted to, or None, if the shape should be kept as-is.
-
point_shape
(tuple[int, ...] | None
) –The shape for the field shape to be broadcasted to, or None, if the shape should be kept as-is.
-
complete_broadcast
(bool
, default:True
) –If False, only dimensions of size 1 are added. When true, the shape of the field precisely matches.
Raises:
-
FieldShapeError
–if the broadcast cannot be done by standard numpy broadcasting rules in each component. Note that broadcasting the basis shape is permitted, beyond standard compatibility rules.
Returns:
-
Field
(Field
) –The broadcasted field.
Source code in fastfem/fields/field.py
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 |
|
are_broadcastable(*fields, strict_basis=True)
staticmethod
¶
Two fields a and b are (fully) broadcastable if they are compatible and have broadcastable point shape. Since this relation is associative, more than two fields can be passed in.
Parameters:
-
fields
(tuple[Field, ...]
, default:()
) –The fields to broadcast.
-
strict_basis
(bool
, default:True
) –If true, the basis rule holds. Otherwise, only basis shape numpy-broadcastibility is checked.
Returns:
-
bool
(bool
) –True if the fields are broadcastable. False otherwise.
Source code in fastfem/fields/field.py
broadcast_fields_full(*fields, strict_basis=True, shapes_only=False)
staticmethod
¶
Two fields a and b are (fully) broadcastable if they are compatible and have broadcastable point shape. Since this relation is associative, more than two fields can be passed in.
Parameters:
-
fields
(tuple[Field, ...]
, default:()
) –The fields to broadcast.
-
strict_basis
(bool
, default:True
) –If true, the basis rule holds. Otherwise, only basis shape numpy-broadcastibility is checked.
-
shapes_only
(bool
, default:False
) –If true, the target shape is returned and no array brouadcasting occurs.
Raises: FieldShapeError: If the fields are not fully broadcastable together.
Returns:
-
tuple[Field, ...] | tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...]]
–tuple[Field, ...]: The broadcasted fields, in the order they were given.
Source code in fastfem/fields/field.py
are_compatible(*fields, strict_basis=True)
staticmethod
¶
Two fields a and b are compatible if they have compatible bases (basis_shape equal or at least one of them is size 1 representing a constant) and they have broadcastable stack_shapes. This function checks them. Since this relation is associative, more than two fields can be passed in.
Parameters:
-
fields
(tuple[Field, ...]
, default:()
) –The fields to query compatibility.
-
strict_basis
(bool
, default:True
) –If true, the basis rule holds. Otherwise, only basis shape numpy-broadcastibility is checked.
Returns:
-
bool
(bool
) –True if the fields are compatible. False otherwise.
Source code in fastfem/fields/field.py
broadcast_field_compatibility(*fields, strict_basis=True)
staticmethod
¶
Two fields a and b are compatible if they have compatible bases (basis_shape equal or at least one of them is size 1 representing a constant) and they have broadcastable stack_shapes. Since this relation is associative, more than two fields can be passed in.
This function broadcasts the fields to have the same stack and basis shapes if they are compatible, or raises an error if they are not.
Parameters:
-
fields
(tuple[Field, ...]
, default:()
) –The fields to broadcast.
-
strict_basis
(bool
, default:True
) –If true, the basis rule holds. Otherwise, only basis shape numpy-broadcastibility is checked.
Raises:
-
FieldShapeError
–if the given fields are not all compatible.
Returns:
-
tuple[Field, ...]
–tuple[Field, ...]: The broadcasted fields, in the order they were given.
Source code in fastfem/fields/field.py
FieldConstructionError
¶
Bases: FieldShapeError
Called when constructing a field fails.
Source code in fastfem/fields/field.py
abs(field)
¶
moveaxis(field, source, destination)
¶
This attempts to replicate the numpy moveaxis
function. Currently, multiple axes at the same time are not supported.
https://numpy.org/doc/stable/reference/generated/numpy.moveaxis.html
Parameters:
-
field
(Field
) –The field whose axes should be reordered
-
source
(FieldAxisIndexType | Sequence[FieldAxisIndexType]
) –Original positions of the axes to move. These must be unique.
-
destination
(FieldAxisIndexType | Sequence[FieldAxisIndexType]
) –Destination positions of the axes to move. These must also be unique.
Source code in fastfem/fields/numpy_similes.py
reshape(field, component_selector, shape, order='C', copy=None)
¶
This attempts to replicate the numpy "reshape" function. https://numpy.org/doc/stable/reference/generated/numpy.reshape.html
reshape() applies numpy "reshape" to a given component. This function is also called
when using the field accessor reshape methods. That is, reshape(field,BASIS,s)
is
the same as field.basis.reshape(s)
Args:
field (Field): The field to reshape
component_selector (ShapeComponent): Which component to reshape.
shape (int | tuple[int]): The target shape of the component. For any integer i,
i is equivalent to (i,)
order ({'C','F','A'}, optional): See the numpy documentation. Defaults to 'C'.
copy (bool | None, optional): See the numpy documentation. Defaults to None.
Raises:
-
ValueError
–when a copy operation is required, but
copy
is False.
Returns: Field: The reshaped field. This is always a new object, but if data is copied, the underlying array is a view of the original.
Source code in fastfem/fields/numpy_similes.py
sum(field, axes)
¶
This attempts to replicate the numpy "sum" function. In https://numpy.org/doc/stable/reference/generated/numpy.sum.html
Parameters:
-
field
(Field
) –description
-
axes
(FieldAxisIndex | tuple[FieldAxisIndex, ...] | ShapeComponent | None
) –description
Returns:
-
Field
(Field
) –description